Python for Physics and Astronomy

From AstroEdWiki
Revision as of 00:03, 10 February 2015 by WikiSysop (talk | contribs)
Jump to navigation Jump to search

The Python programming language is a widely used tool for basic research and engineering. Its rapid rise in popularity is supported by comprehensive, largely open-source, contributions from scientists who use it for their own work. This short course offers an introduction to Python with examples drawn from physics and astronomy.


This resource was developed as part of a full semester Research Methods class. Various examples that may be useful for developing small Python programs are collected here. They are a basis for a few exercises that were assigned during the course are are available here.


The topics and examples cover --

  1. Why program? Choosing a language.
  2. Very simple Python
    1. Installing it on your computer
    2. Using it in real time
    3. Using code as a standalone program
    4. Examples
    5. Assignments
  3. Elements of Python programming
    1. Input and output
    2. Data types: numbers and strings
    3. Lists, tuples, dictionaries, and statements
    4. Examples
    5. Assignments
  4. Solving problems with Python
    1. Flow control
    2. Functions
    3. Iteration
    4. Examples
    5. Assignments
  5. Graphics with Python
    1. Installation of matplotlib
    2. Learning the basics of 2D data and function plotting
    3. Interactive plotting
    4. A little 3D plotting
    5. Examples
    6. Assignments
  6. NumPy, SciPy and SciKits
    1. Numpy
      1. Arrays
      2. Indexing
      3. Functions
      4. Matrix and vector math
      5. Fourier Transforms
    2. SciPy and SciKits
      1. Interpolation
      2. Integration
      3. Differentiation
      4. Statistics
    3. Examples
    4. Assignments
  7. Image processing with Python and SciPy
    1. Python Imaging Library - PIL
    2. Images with NumPy and SciPy
    3. Astronomical FITS files with PyFITS
    4. Other processing
    5. SciKits
    6. Examples
    7. Assignments
  8. [prancer.physics.louisville.edu/astrowiki4/index.php/User_Interfaces User interfaces]
    1. [prancer.physics.louisville.edu/astrowiki4/index.php/User_Interfaces#Command_Line_Interfacing_and_Access_to_the_Operating_System Command line interfacing and access to the operating system]
    2. [prancer.physics.louisville.edu/astrowiki4/index.php/User_Interfaces#Graphical_User_Interfacing Graphical user interfacing]


These topics may be added to a longer version of this course or as working notes when time allows.

  1. Real world interfacing
    1. Instrumentation and communication
    2. Serial ports
    3. USB
    4. TCPIP
    5. Threading
    6. Incorporating manufacturer's code
  2. Working with the web
    1. HTTP servers
    2. Getting data from servers
    3. Sending data to servers
    4. Common gateway interface - CGI
    5. Using Python with CGI
    6. Programming for server-side processing
  3. Python and other languages
    1. Bash scripting in Unix-like systems
    2. Very simple C
    3. Using Python with other code
    4. Android for web development
    5. LabVIEW for instrument control and data analysis
    6. Java for astronomical calculations: AstroCC and AstroImageJ